Positively ratioed representations

Let S be a closed orientable surface of genus at least 2 and let G be a semisimple real algebraic group of non-compact type. We consider a class of representations from the fundamental group of S to G called positively ratioed representations. These are Anosov representations with the additional con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-04
Hauptverfasser: Martone, Giuseppe, Zhang, Tengren
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let S be a closed orientable surface of genus at least 2 and let G be a semisimple real algebraic group of non-compact type. We consider a class of representations from the fundamental group of S to G called positively ratioed representations. These are Anosov representations with the additional condition that certain associated cross ratios satisfy a positivity property. Examples of such representations include Hitchin representations and maximal representations. Using geodesic currents, we show that the corresponding length functions for these positively ratioed representations are well-behaved. In particular, we prove a systolic inequality that holds for all such positively ratioed representations.
ISSN:2331-8422