3D mean Projective Shape Difference for Face Differentiation from Multiple Digital Camera Images

We give a nonparametric methodology for hypothesis testing for equality of extrinsic mean objects on a manifold embedded in a numerical spaces. The results obtained in the general setting are detailed further in the case of 3D projective shapes represented in a space of symmetric matrices via the qu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-04
Hauptverfasser: Yao, K D, Patrangenaru, V, Lester, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a nonparametric methodology for hypothesis testing for equality of extrinsic mean objects on a manifold embedded in a numerical spaces. The results obtained in the general setting are detailed further in the case of 3D projective shapes represented in a space of symmetric matrices via the quadratic Veronese-Whitney (VW) embedding. Large sample and nonparametric bootstrap confidence regions are derived for the common VW-mean of random projective shapes for finite 3D configurations. As an example, the VW MANOVA testing methodology is applied to the multi-sample mean problem for independent projective shapes of \(3D\) facial configurations retrieved from digital images, via Agisoft PhotoScan technology.
ISSN:2331-8422