Necessary subspace concentration conditions for the even dual Minkowski problem

We prove tight subspace concentration inequalities for the dual curvature measures \(\widetilde{\mathrm{C}}_q(K,\cdot)\) of an \(n\)-dimensional origin-symmetric convex body for \(q\geq n+1\). This supplements former results obtained in the range \(q\leq n\).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-03
Hauptverfasser: Martin, Henk, Pollehn, Hannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove tight subspace concentration inequalities for the dual curvature measures \(\widetilde{\mathrm{C}}_q(K,\cdot)\) of an \(n\)-dimensional origin-symmetric convex body for \(q\geq n+1\). This supplements former results obtained in the range \(q\leq n\).
ISSN:2331-8422