The finiteness dimension of modules and relative Cohen-Macaulayness
Let \(R\) be a commutative Noetherian ring, \(\mathfrak a\) and \(\mathfrak b\) ideals of \(R\). In this paper, we study the finiteness dimension \(f_{\mathfrak a}(M)\) of \(M\) relative to \(\mathfrak a\) and the \(\mathfrak b\)-minimum \(\mathfrak a\)-adjusted depth \(\lambda_{\mathfrak a}^{\mathf...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(R\) be a commutative Noetherian ring, \(\mathfrak a\) and \(\mathfrak b\) ideals of \(R\). In this paper, we study the finiteness dimension \(f_{\mathfrak a}(M)\) of \(M\) relative to \(\mathfrak a\) and the \(\mathfrak b\)-minimum \(\mathfrak a\)-adjusted depth \(\lambda_{\mathfrak a}^{\mathfrak b}(M)\) of \(M\), where the underlying module \(M\) is relative Cohen-Macaulay w.r.t \(\mathfrak a\). Some applications of such modules are given. |
---|---|
ISSN: | 2331-8422 |