Lower Bounds on Nonnegative Signed Domination Parameters in Graphs
Let \(1 \leq k \leq n\) be a positive integer. A {\em nonnegative signed \(k\)-subdominating function} is a function \(f:V(G) \rightarrow \{-1,1\}\) satisfying \(\sum_{u\in N_G[v]}f(u) \geq 0\) for at least \(k\) vertices \(v\) of \(G\). The value \(\min\sum_{v\in V(G)} f(v)\), taking over all nonne...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-03 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(1 \leq k \leq n\) be a positive integer. A {\em nonnegative signed \(k\)-subdominating function} is a function \(f:V(G) \rightarrow \{-1,1\}\) satisfying \(\sum_{u\in N_G[v]}f(u) \geq 0\) for at least \(k\) vertices \(v\) of \(G\). The value \(\min\sum_{v\in V(G)} f(v)\), taking over all nonnegative signed \(k\)-subdominating functions \(f\) of \(G\), is called the {\em nonnegative signed \(k\)-subdomination number} of \(G\) and denoted by \(\gamma^{NN}_{ks}(G)\). When \(k=|V(G)|\), \(\gamma^{NN}_{ks}(G)=\gamma^{NN}_s(G)\) is the {\em nonnegative signed domination number}, introduced in \cite{HLFZ}. In this paper, we investigate several sharp lower bounds of \(\gamma^{NN}_s(G)\), which extend some presented lower bounds on \(\gamma^{NN}_s(G)\). We also initiate the study of the nonnegative signed \(k\)-subdomination number in graphs and establish some sharp lower bounds for \(\gamma^{NN}_{ks}(G)\) in terms of order and the degree sequence of a graph \(G\). |
---|---|
ISSN: | 2331-8422 |