A concave-convex problem with a variable operator
We study the following elliptic problem \(-A(u) = \lambda u^q\) with Dirichlet boundary conditions, where \(A(u) (x) = \Delta u (x) \chi_{D_1} (x)+ \Delta_p u(x) \chi_{D_2}(x)\) is the Laplacian in one part of the domain, \(D_1\), and the \(p-\)Laplacian (with \(p>2\)) in the rest of the domain,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the following elliptic problem \(-A(u) = \lambda u^q\) with Dirichlet boundary conditions, where \(A(u) (x) = \Delta u (x) \chi_{D_1} (x)+ \Delta_p u(x) \chi_{D_2}(x)\) is the Laplacian in one part of the domain, \(D_1\), and the \(p-\)Laplacian (with \(p>2\)) in the rest of the domain, \(D_2 \). We show that this problem exhibits a concave-convex nature for \(1 |
---|---|
ISSN: | 2331-8422 |