A concave-convex problem with a variable operator

We study the following elliptic problem \(-A(u) = \lambda u^q\) with Dirichlet boundary conditions, where \(A(u) (x) = \Delta u (x) \chi_{D_1} (x)+ \Delta_p u(x) \chi_{D_2}(x)\) is the Laplacian in one part of the domain, \(D_1\), and the \(p-\)Laplacian (with \(p>2\)) in the rest of the domain,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-03
Hauptverfasser: Molino, Alexis, Rossi, Julio D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the following elliptic problem \(-A(u) = \lambda u^q\) with Dirichlet boundary conditions, where \(A(u) (x) = \Delta u (x) \chi_{D_1} (x)+ \Delta_p u(x) \chi_{D_2}(x)\) is the Laplacian in one part of the domain, \(D_1\), and the \(p-\)Laplacian (with \(p>2\)) in the rest of the domain, \(D_2 \). We show that this problem exhibits a concave-convex nature for \(1
ISSN:2331-8422