Architecture of processing and analysis system for big astronomical data
This work explores the use of big data technologies deployed in the cloud for processing of astronomical data. We have applied Hadoop and Spark to the task of co-adding astronomical images. We compared the overhead and execution time of these frameworks. We conclude that performance of both framewor...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-03 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work explores the use of big data technologies deployed in the cloud for processing of astronomical data. We have applied Hadoop and Spark to the task of co-adding astronomical images. We compared the overhead and execution time of these frameworks. We conclude that performance of both frameworks is generally on par. The Spark API is more flexible, which allows one to easily construct astronomical data processing pipelines. |
---|---|
ISSN: | 2331-8422 |