Efficient CSMA using Regional Free Energy Approximations
CSMA (Carrier Sense Multiple Access) algorithms based on Gibbs sampling can achieve throughput optimality if certain parameters called the fugacities are appropriately chosen. However, the problem of computing these fugacities is NP-hard. In this work, we derive estimates of the fugacities by using...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-02 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CSMA (Carrier Sense Multiple Access) algorithms based on Gibbs sampling can achieve throughput optimality if certain parameters called the fugacities are appropriately chosen. However, the problem of computing these fugacities is NP-hard. In this work, we derive estimates of the fugacities by using a framework called the regional free energy approximations. In particular, we derive explicit expressions for approximate fugacities corresponding to any feasible service rate vector. We further prove that our approximate fugacities are exact for the class of chordal graphs. A distinguishing feature of our work is that the regional approximations that we propose are tailored to conflict graphs with small cycles, which is a typical characteristic of wireless networks. Numerical results indicate that the fugacities obtained by the proposed method are quite accurate and significantly outperform the existing Bethe approximation based techniques. |
---|---|
ISSN: | 2331-8422 |