Corrosion inhibition and friction-reduction property of tetrazole derivatives on copper

Purpose This paper aims to evaluate the inhibitive effect and adsorption behavior of 5-(ethylthio)-1H-tetrazole (EHT) and 5-(benzylthio)-1H-tetrazole (BHT) on copper in a sulfur-ethanol system. Design Methodology Approach Evaluation was carried out using electrochemical measurement and surface analy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anti-corrosion methods and materials 2018-07, Vol.65 (4), p.361-367
Hauptverfasser: Liu, Lin, Su, Hongyu, Xing, Jinjuan, Peng, Dan, Zhang, Qiang, Qian, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose This paper aims to evaluate the inhibitive effect and adsorption behavior of 5-(ethylthio)-1H-tetrazole (EHT) and 5-(benzylthio)-1H-tetrazole (BHT) on copper in a sulfur-ethanol system. Design Methodology Approach Evaluation was carried out using electrochemical measurement and surface analysis techniques. Measurements of static friction coefficient by scanning electron microscopy and contact angle analysis were applied and finally confirmed the existence of the adsorbed film. The inhibitive mechanism of the two compounds was evaluated by means of quantitative calculation and molecular dynamics simulation. The friction coefficient of corrosion surface before and after adding corrosion inhibitor was determined through static friction coefficient measurements. Findings The electrochemical measurement indicated that the most effective concentration of two corrosion inhibitors was 70 mg L–1, while the inhibition efficiency of that was EHT > BHT. The friction coefficient data showed that the addition of corrosion inhibitor reduced the roughness of the corrosion surface. Adsorption behavior of two inhibitors followed the Langmuir’s adsorption isotherm and was attributed to mixed-type adsorption. The results of quantitative calculation and molecular dynamics simulation showed that tetrazole rings of the two inhibitors and its connected S atoms were adsorbed on Cu(111) surface in parallel. Originality Value The corrosion inhibition performance of two tetrazolium derivatives in a sulfur-ethanol system was studied by combining experiments with theory, which provided a theoretical basis for the future research.
ISSN:0003-5599
1758-4221
DOI:10.1108/ACMM-09-2017-1839