The effect of turbulence on mass and heat transfer rates of small inertial particles
The effect of turbulence on the mass and heat transfer between small heavy inertial particles (HIP) and an embedding fluid is studied. Two effects are identified. The first effect is due to the relative velocity between the fluid and the particles, and a model for the relative velocity is presented....
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of turbulence on the mass and heat transfer between small heavy inertial particles (HIP) and an embedding fluid is studied. Two effects are identified. The first effect is due to the relative velocity between the fluid and the particles, and a model for the relative velocity is presented. The second effect is due to the clustering of particles, where the mass transfer rate is inhibited due to the rapid depletion of the consumed species inside the dense particle clusters. This last effect is relevant for large Damkohler numbers and it may totally control the mass transfer rate for Damkohler numbers larger than unity. A model that describes how this effect should be incorporated into existing particle simulation tools is presented. |
---|---|
ISSN: | 2331-8422 |