Perfect hedging in rough Heston models

Rough volatility models are known to reproduce the behavior of historical volatility data while at the same time fitting the volatility surface remarkably well, with very few parameters. However, managing the risks of derivatives under rough volatility can be intricate since the dynamics involve fra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2017-03
Hauptverfasser: Omar El Euch, Rosenbaum, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rough volatility models are known to reproduce the behavior of historical volatility data while at the same time fitting the volatility surface remarkably well, with very few parameters. However, managing the risks of derivatives under rough volatility can be intricate since the dynamics involve fractional Brownian motion. We show in this paper that surprisingly enough, explicit hedging strategies can be obtained in the case of rough Heston models. The replicating portfolios contain the underlying asset and the forward variance curve, and lead to perfect hedging (at least theoretically). From a probabilistic point of view, our study enables us to disentangle the infinite-dimensional Markovian structure associated to rough volatility models.
ISSN:2331-8422