On the algorithmic complexity of finding hamiltonian cycles in special classes of planar cubic graphs

It is a well-known fact that hamiltonicity in planar cubic graphs is an NP-complete problem. This implies that the existence of an A-trail in plane eulerian graphs is also an NP-complete problem even if restricted to planar 3-connected eulerian graphs. In this paper we deal with hamiltonicity in pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-06
Hauptverfasser: Behrooz Bagheri Gh, Feder, Tomas, Fleischner, Herbert, Subi, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is a well-known fact that hamiltonicity in planar cubic graphs is an NP-complete problem. This implies that the existence of an A-trail in plane eulerian graphs is also an NP-complete problem even if restricted to planar 3-connected eulerian graphs. In this paper we deal with hamiltonicity in planar cubic graphs G having a facial 2-factor Q via (quasi) spanning trees of faces in G/Q and study the algorithmic complexity of finding such (quasi) spanning trees of faces. We show, in particular, that if Barnette's Conjecture is false, then hamiltonicity in 3-connected planar cubic bipartite graphs is an NP-complete problem.
ISSN:2331-8422