Homogenization of obstacle problems in Orlicz-Sobolev spaces
We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the \(p(\cdot)\)-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the \(p(\cdot)\)-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions. |
---|---|
ISSN: | 2331-8422 |