Homogenization of obstacle problems in Orlicz-Sobolev spaces

We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the \(p(\cdot)\)-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-06
Hauptverfasser: Marcon, Diego, Rodrigues, José Francisco, Teymurazyan, Rafayel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the homogenization of obstacle problems in Orlicz-Sobolev spaces for a wide class of monotone operators (possibly degenerate or singular) of the \(p(\cdot)\)-Laplacian type. Our approach is based on the Lewy-Stampacchia inequalities, which then give access to a compactness argument. We also prove the convergence of the coincidence sets under non-degeneracy conditions.
ISSN:2331-8422