Geometric, spectral and asymptotic properties of averaged products of projections in Banach spaces

According to the von Neumann-Halperin and Lapidus theorems, in a Hilbert space the iterates of products or, respectively, of convex combinations of orthoprojections are strongly convergent. We extend these results to the iterates of convex combinations of products of some projections in a complex Ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2010-07
Hauptverfasser: Badea, Catalin, Lyubich, Yuri I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to the von Neumann-Halperin and Lapidus theorems, in a Hilbert space the iterates of products or, respectively, of convex combinations of orthoprojections are strongly convergent. We extend these results to the iterates of convex combinations of products of some projections in a complex Banach space. The latter is assumed uniformly convex or uniformly smooth for the orthoprojections, or reflexive for more special projections, in particular, for the hermitian ones. In all cases the proof of convergence is based on a known criterion in terms of the boundary spectrum.
ISSN:2331-8422