Coulomb branches of \(3d\) \(\mathcal N=4\) quiver gauge theories and slices in the affine Grassmannian (with appendices by Alexander Braverman, Michael Finkelberg, Joel Kamnitzer, Ryosuke Kodera, Hiraku Nakajima, Ben Webster, and Alex Weekes)

This is a companion paper of arXiv:1601.03586. We study Coulomb branches of unframed and framed quiver gauge theories of type \(ADE\). In the unframed case they are isomorphic to the moduli space of based rational maps from \({\mathbb C}P^1\) to the flag variety. In the framed case they are slices i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-05
Hauptverfasser: Braverman, Alexander, Finkelberg, Michael, Nakajima, Hiraku
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This is a companion paper of arXiv:1601.03586. We study Coulomb branches of unframed and framed quiver gauge theories of type \(ADE\). In the unframed case they are isomorphic to the moduli space of based rational maps from \({\mathbb C}P^1\) to the flag variety. In the framed case they are slices in the affine Grassmannian and their generalization. In the appendix, written jointly with Joel Kamnitzer, Ryosuke Kodera, Ben Webster, and Alex Weekes, we identify the quantized Coulomb branch with the truncated shifted Yangian.
ISSN:2331-8422