Dependent Microstructure Noise and Integrated Volatility Estimation from High-Frequency Data

In this paper, we develop econometric tools to analyze the integrated volatility of the efficient price and the dynamic properties of microstructure noise in high-frequency data under general dependent noise. We first develop consistent estimators of the variance and autocovariances of noise using a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-06
Hauptverfasser: Z Merrick Li, Laeven, Roger J A, Vellekoop, Michel H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we develop econometric tools to analyze the integrated volatility of the efficient price and the dynamic properties of microstructure noise in high-frequency data under general dependent noise. We first develop consistent estimators of the variance and autocovariances of noise using a variant of realized volatility. Next, we employ these estimators to adapt the pre-averaging method and derive a consistent estimator of the integrated volatility, which converges stably to a mixed Gaussian distribution at the optimal rate \(n^{1/4}\). To refine the finite sample performance, we propose a two-step approach that corrects the finite sample bias, which turns out to be crucial in applications. Our extensive simulation studies demonstrate the excellent performance of our two-step estimators. In an empirical study, we characterize the dependence structures of microstructure noise in several popular sampling schemes and provide intuitive economic interpretations; we also illustrate the importance of accounting for both the serial dependence in noise and the finite sample bias when estimating integrated volatility.
ISSN:2331-8422