The Breuil--M\'{e}zard conjecture when \(l \neq p\)
Let \(l\) and \(p\) be primes, let \(F/\mathbb{Q}_p\) be a finite extension with absolute Galois group \(G_F\), let \(\mathbb{F}\) be a finite field of characteristic \(l\), and let \(\bar{\rho} : G_F \rightarrow GL_n(\mathbb{F})\) be a continuous representation. Let \(R^\square(\bar{\rho})\) be the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2017-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(l\) and \(p\) be primes, let \(F/\mathbb{Q}_p\) be a finite extension with absolute Galois group \(G_F\), let \(\mathbb{F}\) be a finite field of characteristic \(l\), and let \(\bar{\rho} : G_F \rightarrow GL_n(\mathbb{F})\) be a continuous representation. Let \(R^\square(\bar{\rho})\) be the universal framed deformation ring for \(\bar{\rho}\). If \(l = p\), then the Breuil--M\'{e}zard conjecture (as formulated by Emerton and Gee) relates the mod \(l\) reduction of certain cycles in \(R^\square(\bar{\rho})\) to the mod \(l\) reduction of certain representations of \(GL_n(\mathcal{O}_F)\). We state an analogue of the Breuil--M\'{e}zard conjecture when \(l \neq p\), and prove it whenever \(l > 2\) using automorphy lifting theorems. We give a local proof when \(l\) is "quasi-banal" for \(F\) and \(\bar{\rho}\) is tamely ramified. We also analyse the reduction modulo \(l\) of the types \(\sigma(\tau)\) defined by Schneider and Zink. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1608.01784 |