On a conjecture of Karasev

Karasev conjectured that for any set of \(3k\) lines in general position in the plane, which is partitioned into \(3\) color classes of equal size \(k\), the set can be partitioned into \(k\) colorful 3-subsets such that all the triangles formed by the subsets have a point in common. Although the ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-05
Hauptverfasser: Lee, Seunghun, Yoo, Kangmin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Karasev conjectured that for any set of \(3k\) lines in general position in the plane, which is partitioned into \(3\) color classes of equal size \(k\), the set can be partitioned into \(k\) colorful 3-subsets such that all the triangles formed by the subsets have a point in common. Although the general conjecture is false, we show that Karasev's conjecture is true for lines in convex position. We also discuss possible generalizations of this result.
ISSN:2331-8422