The Jordan lattice completion and a note on injective envelopes and von Neumann algebras

The article associates two fundamental lattice constructions with each regular unital real ordered Banach space (function system). These are used to establish certain results in the theory of operator algebras, specifically relating the injective envelope of a separable C*-algebra with its envelopin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-05
1. Verfasser: Haag, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The article associates two fundamental lattice constructions with each regular unital real ordered Banach space (function system). These are used to establish certain results in the theory of operator algebras, specifically relating the injective envelope of a separable C*-algebra with its enveloping von Neumann algebra in a given faithful separable representation. The last section investigates on lattices of projections arising in injective C*-algebras and von Neumann algebras and certain nonlinear maps sending projections to projections which are essentially determined by their values on positive projections.
ISSN:2331-8422