Divisibility of L-Polynomials for a Family of Artin-Schreier Curves

In this paper we consider the curves \(C_k^{(p,a)} : y^p-y=x^{p^k+1}+ax\) defined over \(\mathbb F_p\) and give a positive answer to a conjecture about a divisibility condition on \(L\)-polynomials of the curves \(C_k^{(p,a)}\). Our proof involves finding an exact formula for the number of \(\mathbb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-05
Hauptverfasser: McGuire, Gary, Emrah Sercan Yılmaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we consider the curves \(C_k^{(p,a)} : y^p-y=x^{p^k+1}+ax\) defined over \(\mathbb F_p\) and give a positive answer to a conjecture about a divisibility condition on \(L\)-polynomials of the curves \(C_k^{(p,a)}\). Our proof involves finding an exact formula for the number of \(\mathbb F_{p^n}\)-rational points on \(C_k^{(p,a)}\) for all \(n\), and uses a result we proved elsewhere about the number of rational points on supersingular curves.
ISSN:2331-8422