Model comparison for Gibbs random fields using noisy reversible jump Markov chain Monte Carlo

The reversible jump Markov chain Monte Carlo (RJMCMC) method offers an across-model simulation approach for Bayesian estimation and model comparison, by exploring the sampling space that consists of several models of possibly varying dimensions. A naive implementation of RJMCMC to models like Gibbs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-07
Hauptverfasser: Bouranis, Lampros, Friel, Nial, Maire, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reversible jump Markov chain Monte Carlo (RJMCMC) method offers an across-model simulation approach for Bayesian estimation and model comparison, by exploring the sampling space that consists of several models of possibly varying dimensions. A naive implementation of RJMCMC to models like Gibbs random fields suffers from computational difficulties: the posterior distribution for each model is termed doubly-intractable since computation of the likelihood function is rarely available. Consequently, it is simply impossible to simulate a transition of the Markov chain in the presence of likelihood intractability. A variant of RJMCMC is presented, called noisy RJMCMC, where the underlying transition kernel is replaced with an approximation based on unbiased estimators. Based on previous theoretical developments, convergence guarantees for the noisy RJMCMC algorithm are provided. The experiments show that the noisy RJMCMC algorithm can be much more efficient than other exact methods, provided that an estimator with controlled Monte Carlo variance is used, a fact which is in agreement with the theoretical analysis.
ISSN:2331-8422