On the cone of \(f\)-vectors of cubical polytopes

What is the minimal closed cone containing all \(f\)-vectors of cubical \(d\)-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical \(g\)-vector coordinates, contains the nonnegative \(g\)-orthant, thus verifying one direction of the Cubical Generalized Lower Bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-05
Hauptverfasser: Adin, Ron M, Kalmanovich, Daniel, Nevo, Eran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Adin, Ron M
Kalmanovich, Daniel
Nevo, Eran
description What is the minimal closed cone containing all \(f\)-vectors of cubical \(d\)-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical \(g\)-vector coordinates, contains the nonnegative \(g\)-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073845751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073845751</sourcerecordid><originalsourceid>FETCH-proquest_journals_20738457513</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKMlIVUjOz0tVyE9TiNFIi9HULUtNLskvKgYJJJcmZSYn5igU5OdUluQXpBbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYG5sYWJqbmpoTFxqgArDzKb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073845751</pqid></control><display><type>article</type><title>On the cone of \(f\)-vectors of cubical polytopes</title><source>Free E- Journals</source><creator>Adin, Ron M ; Kalmanovich, Daniel ; Nevo, Eran</creator><creatorcontrib>Adin, Ron M ; Kalmanovich, Daniel ; Nevo, Eran</creatorcontrib><description>What is the minimal closed cone containing all \(f\)-vectors of cubical \(d\)-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical \(g\)-vector coordinates, contains the nonnegative \(g\)-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Lower bounds ; Polytopes</subject><ispartof>arXiv.org, 2018-05</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785</link.rule.ids></links><search><creatorcontrib>Adin, Ron M</creatorcontrib><creatorcontrib>Kalmanovich, Daniel</creatorcontrib><creatorcontrib>Nevo, Eran</creatorcontrib><title>On the cone of \(f\)-vectors of cubical polytopes</title><title>arXiv.org</title><description>What is the minimal closed cone containing all \(f\)-vectors of cubical \(d\)-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical \(g\)-vector coordinates, contains the nonnegative \(g\)-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold.</description><subject>Lower bounds</subject><subject>Polytopes</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9M9TKMlIVUjOz0tVyE9TiNFIi9HULUtNLskvKgYJJJcmZSYn5igU5OdUluQXpBbzMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80qI8oFS8kYG5sYWJqbmpoTFxqgArDzKb</recordid><startdate>20180518</startdate><enddate>20180518</enddate><creator>Adin, Ron M</creator><creator>Kalmanovich, Daniel</creator><creator>Nevo, Eran</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180518</creationdate><title>On the cone of \(f\)-vectors of cubical polytopes</title><author>Adin, Ron M ; Kalmanovich, Daniel ; Nevo, Eran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20738457513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Lower bounds</topic><topic>Polytopes</topic><toplevel>online_resources</toplevel><creatorcontrib>Adin, Ron M</creatorcontrib><creatorcontrib>Kalmanovich, Daniel</creatorcontrib><creatorcontrib>Nevo, Eran</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adin, Ron M</au><au>Kalmanovich, Daniel</au><au>Nevo, Eran</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the cone of \(f\)-vectors of cubical polytopes</atitle><jtitle>arXiv.org</jtitle><date>2018-05-18</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>What is the minimal closed cone containing all \(f\)-vectors of cubical \(d\)-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical \(g\)-vector coordinates, contains the nonnegative \(g\)-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2073845751
source Free E- Journals
subjects Lower bounds
Polytopes
title On the cone of \(f\)-vectors of cubical polytopes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20cone%20of%20%5C(f%5C)-vectors%20of%20cubical%20polytopes&rft.jtitle=arXiv.org&rft.au=Adin,%20Ron%20M&rft.date=2018-05-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073845751%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073845751&rft_id=info:pmid/&rfr_iscdi=true