On the cone of \(f\)-vectors of cubical polytopes
What is the minimal closed cone containing all \(f\)-vectors of cubical \(d\)-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical \(g\)-vector coordinates, contains the nonnegative \(g\)-orthant, thus verifying one direction of the Cubical Generalized Lower Bou...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | What is the minimal closed cone containing all \(f\)-vectors of cubical \(d\)-polytopes? We construct cubical polytopes showing that this cone, expressed in the cubical \(g\)-vector coordinates, contains the nonnegative \(g\)-orthant, thus verifying one direction of the Cubical Generalized Lower Bound Conjecture of Babson, Billera and Chan. Our polytopes also show that a natural cubical analogue of the simplicial Generalized Lower Bound Theorem does not hold. |
---|---|
ISSN: | 2331-8422 |