Perpendicular Rectangular Latin Arrays

A set { A 1 , A 2 ,..., A t } of rectangular arrays, each defined on a symbol set X , is said to be t -perpendicular if each t -element subset of X occurs precisely once when the arrays are superimposed. We investigate the existence of sets of r by s rectangular arrays which are row-Latin, column-La...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2009-05, Vol.25 (1), p.15-25
Hauptverfasser: Brier, Robert, Bryant, Darryn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A set { A 1 , A 2 ,..., A t } of rectangular arrays, each defined on a symbol set X , is said to be t -perpendicular if each t -element subset of X occurs precisely once when the arrays are superimposed. We investigate the existence of sets of r by s rectangular arrays which are row-Latin, column-Latin and t -perpendicular. For example, we show that for all odd n , there exists a pair of row- and column-Latin 2-perpendicular r by s arrays with symbol set X of size n if and only if and r , s  ≤  n .
ISSN:0911-0119
1435-5914
DOI:10.1007/s00373-008-0822-8