Perpendicular Rectangular Latin Arrays
A set { A 1 , A 2 ,..., A t } of rectangular arrays, each defined on a symbol set X , is said to be t -perpendicular if each t -element subset of X occurs precisely once when the arrays are superimposed. We investigate the existence of sets of r by s rectangular arrays which are row-Latin, column-La...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2009-05, Vol.25 (1), p.15-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A set {
A
1
,
A
2
,...,
A
t
} of rectangular arrays, each defined on a symbol set
X
, is said to be
t
-perpendicular if each
t
-element subset of
X
occurs precisely once when the arrays are superimposed. We investigate the existence of sets of
r
by
s
rectangular arrays which are row-Latin, column-Latin and
t
-perpendicular. For example, we show that for all odd
n
, there exists a pair of row- and column-Latin 2-perpendicular
r
by
s
arrays with symbol set
X
of size
n
if and only if
and
r
,
s
≤
n
. |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-008-0822-8 |