Hamiltonian cycles in planar cubic graphs with facial 2-factors, and a new partial solution of Barnette's Conjecture

We study the existence of hamiltonian cycles in plane cubic graphs G having a facial 2-factor Q. Thus hamiltonicity in G is transformed into the existence of a (quasi) spanning tree of faces in the contraction G/Q. In particular, we study the case where G is the leapfrog extension (called vertex env...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-11
Hauptverfasser: Behrooz Bagheri Gh, Feder, Tomas, Fleischner, Herbert, Subi, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the existence of hamiltonian cycles in plane cubic graphs G having a facial 2-factor Q. Thus hamiltonicity in G is transformed into the existence of a (quasi) spanning tree of faces in the contraction G/Q. In particular, we study the case where G is the leapfrog extension (called vertex envelope in (Discrete Math., 309(14):4793-4809, 2009)) of a plane cubic graph G_0. As a consequence we prove hamiltonicity in the leapfrog extension of planar cubic cyclically 4-edge-connected bipartite graphs. This and other results of this paper establish partial solutions of Barnette's Conjecture according to which every 3-connected cubic planar bipartite graph is hamiltonian. These results go considerably beyond Goodey's result on this topic (Israel J. Math., 22:52-56, 1975).
ISSN:2331-8422