Estimating non-linear ARMA models using Fourier coefficients
Linear time-series models are often inadequate to capture the presence of asymmetric adjustment and/or conditional volatility. Parametric models of asymmetric adjustment and ARCH-type models necessitate specifying the nature of the non-linear coefficient. If there is little a priori information conc...
Gespeichert in:
Veröffentlicht in: | International journal of forecasting 2000-07, Vol.16 (3), p.333-347 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Linear time-series models are often inadequate to capture the presence of asymmetric adjustment and/or conditional volatility. Parametric models of asymmetric adjustment and
ARCH-type models necessitate specifying the nature of the non-linear coefficient. If there is little
a priori information concerning the actual form of the non-linearity, the estimated model can suffer from a misspecification error. We show that a non-linear time-series can be represented by a deterministic time-dependent coefficient model without first specifying the nature of the non-linearity. The methodology is applied to real GDP and the NYSE Transportation Index. |
---|---|
ISSN: | 0169-2070 1872-8200 |
DOI: | 10.1016/S0169-2070(00)00048-0 |