Estimating non-linear ARMA models using Fourier coefficients

Linear time-series models are often inadequate to capture the presence of asymmetric adjustment and/or conditional volatility. Parametric models of asymmetric adjustment and ARCH-type models necessitate specifying the nature of the non-linear coefficient. If there is little a priori information conc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2000-07, Vol.16 (3), p.333-347
Hauptverfasser: Ludlow, Jorge, Enders, Walter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Linear time-series models are often inadequate to capture the presence of asymmetric adjustment and/or conditional volatility. Parametric models of asymmetric adjustment and ARCH-type models necessitate specifying the nature of the non-linear coefficient. If there is little a priori information concerning the actual form of the non-linearity, the estimated model can suffer from a misspecification error. We show that a non-linear time-series can be represented by a deterministic time-dependent coefficient model without first specifying the nature of the non-linearity. The methodology is applied to real GDP and the NYSE Transportation Index.
ISSN:0169-2070
1872-8200
DOI:10.1016/S0169-2070(00)00048-0