A note on multi-step forecasting with functional coefficient autoregressive models

This paper presents and evaluates alternative methods for multi-step forecasting using univariate and multivariate functional coefficient autoregressive (FCAR) models. The methods include a simple “plug-in” approach, a bootstrap-based approach, and a multi-stage smoothing approach, where the functio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of forecasting 2005-10, Vol.21 (4), p.717-727
Hauptverfasser: Harvill, Jane L., Ray, Bonnie K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents and evaluates alternative methods for multi-step forecasting using univariate and multivariate functional coefficient autoregressive (FCAR) models. The methods include a simple “plug-in” approach, a bootstrap-based approach, and a multi-stage smoothing approach, where the functional coefficients are updated at each step to incorporate information from the time series captured in the previous predictions. The three methods are applied to a series of U.S. GNP and unemployment data to compare performance in practice. We find that the bootstrap-based approach out-performs the other two methods for nonlinear prediction, and that little forecast accuracy is sacrificed using any of the methods if the underlying process is actually linear.
ISSN:0169-2070
1872-8200
DOI:10.1016/j.ijforecast.2005.04.012