On the Computational Power of Online Gradient Descent
We prove that the evolution of weight vectors in online gradient descent can encode arbitrary polynomial-space computations, even in very simple learning settings. Our results imply that, under weak complexity-theoretic assumptions, it is impossible to reason efficiently about the fine-grained behav...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-02 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the evolution of weight vectors in online gradient descent can encode arbitrary polynomial-space computations, even in very simple learning settings. Our results imply that, under weak complexity-theoretic assumptions, it is impossible to reason efficiently about the fine-grained behavior of online gradient descent. |
---|---|
ISSN: | 2331-8422 |