Enumerating Non-crossing Minimally Rigid Frameworks
In this paper, we present an algorithm for enumerating without repetitions all the non-crossing generically minimally rigid bar-and-joint frameworks (simply called non-crossing Laman frameworks) on a given generic set of n points. Our algorithm is based on the reverse search paradigm of Avis and Fuk...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2007-06, Vol.23 (S1), p.117-134 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we present an algorithm for enumerating without repetitions all the non-crossing generically minimally rigid bar-and-joint frameworks (simply called non-crossing Laman frameworks) on a given generic set of n points. Our algorithm is based on the reverse search paradigm of Avis and Fukuda. It generates each output graph in O(n4) time and O(n) space, or, with a slightly different implementation, in O(n3) time and O(n2) space. In particular, we obtain that the set of all non-crossing Laman frameworks on a given point set is connected by flips which remove an edge and then restore the Laman property with the addition of a non-crossing edge. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-007-0709-0 |