A Proof of the Strict Monotone 5-step Conjecture
A computer search through the oriented matroid programs with dimension 5 and 10 facets shows that the maximum strictly monotone diameter is 5. Thus \(\Delta_{sm}(5,10)=5\). This enumeration is analogous to that of Bremner and Schewe for the non-monotone diameter of 6-polytopes with 12 facets. Simila...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-06 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A computer search through the oriented matroid programs with dimension 5 and 10 facets shows that the maximum strictly monotone diameter is 5. Thus \(\Delta_{sm}(5,10)=5\). This enumeration is analogous to that of Bremner and Schewe for the non-monotone diameter of 6-polytopes with 12 facets. Similar enumerations show that \(\Delta_{sm}(4,9)=5\) and \(\Delta_m(4,9)=\Delta_m(5,10)=6.\) We shorten the known non-computer proof of the strict monotone 4-step conjecture. |
---|---|
ISSN: | 2331-8422 |