Bipartite Q -Polynomial Distance-Regular Graphs
Let Gamma denote a bipartite distance-regular graph with diameter Dge12. We show Gamma is Q-polynomial if and only if one of the following (i)-(iv) holds: (i) Gamma is the ordinary 2D-cycle. (ii) Gamma is the Hamming cube H(D,2). (iii) Gamma is the antipodal quotient of H(2D,2). (iv) The intersectio...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2004-03, Vol.20 (1), p.47-57 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Gamma denote a bipartite distance-regular graph with diameter Dge12. We show Gamma is Q-polynomial if and only if one of the following (i)-(iv) holds: (i) Gamma is the ordinary 2D-cycle. (ii) Gamma is the Hamming cube H(D,2). (iii) Gamma is the antipodal quotient of H(2D,2). (iv) The intersection numbers of Gamma satisfy where q is an integer at least 2. We obtain the above result using the Terwilliger algebra of Gamma. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s00373-003-0538-8 |