On Ramsey Numbers for Trees Versus Wheels of Five or Six Vertices

For given two graphs G dan H, the Ramsey number R(G,H) is the smallest positive integer n such that every graph F of order n must contain G or the complement of F must contain H. In [12], the Ramsey numbers for the combination between a star Sn and a wheel Wm for m=4,5 were shown, namely, R(Sn,W4)=2...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Graphs and combinatorics 2002-12, Vol.18 (4), p.717-721
Hauptverfasser: Baskoro, E.T., Nababan, S.M., Miller, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For given two graphs G dan H, the Ramsey number R(G,H) is the smallest positive integer n such that every graph F of order n must contain G or the complement of F must contain H. In [12], the Ramsey numbers for the combination between a star Sn and a wheel Wm for m=4,5 were shown, namely, R(Sn,W4)=2nm1 for odd n and nS3, otherwise R(Sn,W4)=2n+1, and R(Sn,W5)=3nm2 for nS3. In this paper, we shall study the Ramsey number R(G,Wm) for G any tree Tn. We show that if Tn is not a star then the Ramsey number R(Tn,W4)=2nm1 for nS4 and R(Tn,W5)=3nm2 for nS3. We also list some open problems. [PUBLICATION ABSTRACT]
ISSN:0911-0119
1435-5914
DOI:10.1007/s003730200056