On Ramsey Numbers for Trees Versus Wheels of Five or Six Vertices
For given two graphs G dan H, the Ramsey number R(G,H) is the smallest positive integer n such that every graph F of order n must contain G or the complement of F must contain H. In [12], the Ramsey numbers for the combination between a star Sn and a wheel Wm for m=4,5 were shown, namely, R(Sn,W4)=2...
Gespeichert in:
Veröffentlicht in: | Graphs and combinatorics 2002-12, Vol.18 (4), p.717-721 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For given two graphs G dan H, the Ramsey number R(G,H) is the smallest positive integer n such that every graph F of order n must contain G or the complement of F must contain H. In [12], the Ramsey numbers for the combination between a star Sn and a wheel Wm for m=4,5 were shown, namely, R(Sn,W4)=2nm1 for odd n and nS3, otherwise R(Sn,W4)=2n+1, and R(Sn,W5)=3nm2 for nS3. In this paper, we shall study the Ramsey number R(G,Wm) for G any tree Tn. We show that if Tn is not a star then the Ramsey number R(Tn,W4)=2nm1 for nS4 and R(Tn,W5)=3nm2 for nS3. We also list some open problems. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0911-0119 1435-5914 |
DOI: | 10.1007/s003730200056 |