Optimizing Service Restoration in Distribution Systems with Uncertain Repair Time and Demand

This paper proposes a novel method to co-optimize distribution system operation and repair crew routing for outage restoration after extreme weather events. A two-stage stochastic mixed integer linear program is developed. The first stage is to dispatch the repair crews to the damaged components. Th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-06
Hauptverfasser: Arif, Anmar, Ma, Shanshan, Wang, Zhaoyu, Wang, Jianhui, Ryan, Sarah M, Chen, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel method to co-optimize distribution system operation and repair crew routing for outage restoration after extreme weather events. A two-stage stochastic mixed integer linear program is developed. The first stage is to dispatch the repair crews to the damaged components. The second stage is distribution system restoration using distributed generators, and reconfiguration. We consider demand uncertainty in terms of a truncated normal forecast error distribution, and model the uncertainty of the repair time using a lognormal distribution. A new decomposition approach, combined with the Progressive Hedging algorithm, is developed for solving large-scale outage management problems in an effective and timely manner. The proposed method is validated on modified IEEE 34- and 8500-bus distribution test systems.
ISSN:2331-8422