A new iterative scheme for solving the discrete Smoluchowski equation

This paper introduces a new iterative scheme for solving the discrete Smoluchowski equation and explores the numerical convergence properties of the method for a range of kernels admitting analytical solutions, in addition to some more physically realistic kernels typically used in kinetics applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-01, Vol.352, p.373-387
Hauptverfasser: Smith, Alastair J., Wells, Clive G., Kraft, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new iterative scheme for solving the discrete Smoluchowski equation and explores the numerical convergence properties of the method for a range of kernels admitting analytical solutions, in addition to some more physically realistic kernels typically used in kinetics applications. The solver is extended to spatially dependent problems with non-uniform velocities and its performance investigated in detail. •A new iterative scheme for the discrete Smoluchowski equation is presented.•The numerical properties of the method are explored for a range of kernels.•The solver is extended to spatially dependent problems with non-uniform velocities.•It is suggested how the performance of the method could render it useful in CFD applications to industrial coagulation problems.
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2017.09.045