Magnetic field seeding by galactic winds

The origin of intergalactic magnetic fields is still a mystery and several scenarios have been proposed so far: among them, primordial phase transitions, structure-formation shocks and galactic outflows. In this work, we investigate how efficiently galactic winds can provide an intense and widesprea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2006-07, Vol.370 (1), p.319-330
Hauptverfasser: Bertone, Serena, Vogt, Corina, Enßlin, Torsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of intergalactic magnetic fields is still a mystery and several scenarios have been proposed so far: among them, primordial phase transitions, structure-formation shocks and galactic outflows. In this work, we investigate how efficiently galactic winds can provide an intense and widespread 'seed' magnetization. This may be used to explain the magnetic fields observed today in clusters of galaxies and in the intergalactic medium (IGM). We use semi-analytic simulations of magnetized galactic winds coupled to high-resolution N-body simulations of structure formation to estimate lower and upper limits for the fraction of the IGM which can be magnetized up to a specified level. We find that galactic winds are able to seed a substantial fraction of the cosmic volume with magnetic fields. Most regions affected by winds have magnetic fields in the range 10−12 < B < 10−8 G, while higher seed fields can be obtained only rarely and in close proximity to wind-blowing galaxies. These seed fields are sufficiently intense for a moderately efficient turbulent dynamo to amplify them to the observed values. The volume-filling factor of the magnetized regions strongly depends on the efficiency of winds to load mass from the ambient medium. However, winds never completely fill the whole Universe and pristine gas can be found in cosmic voids and regions unaffected by feedback even at z= 0. This means that, in principle, there might be the possibility to probe the existence of primordial magnetic fields in such regions.
ISSN:0035-8711
1365-2966
DOI:10.1111/j.1365-2966.2006.10474.x