On positive strictly singular operators and domination

We study the domination problem by positive strictly singular operators between Banach lattices. Precisely we show that if E and F are two Banach lattices such that the norms on E' and F are order continuous and E satisfies the subsequence splitting property, and 0< or =S< or = T : E [Rig...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Positivity (Dordrecht) 2003-06, Vol.7 (1-2), p.73-80
Hauptverfasser: FLORES, Julio, HERNANDEZ, Francisco L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the domination problem by positive strictly singular operators between Banach lattices. Precisely we show that if E and F are two Banach lattices such that the norms on E' and F are order continuous and E satisfies the subsequence splitting property, and 0< or =S< or = T : E [Right arrow] F are two positive operators, then T strictly singular implies S strictly singular. The special case of endomorphisms is also considered. Applications to the class of %strictly co-singular (or Pelczynski) operators are given too. [PUBLICATION ABSTRACT]
ISSN:1385-1292
1572-9281
DOI:10.1023/A:1025836620741