Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields
We study ideal lattices in \(\mathbb{R}^2\) coming from real quadratic fields, and give an explicit method for computing all well-rounded twists of any such ideal lattice. We apply this to ideal lattices coming from Markoff numbers to construct infinite families of non-equivalent planar lattices wit...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Mohamed Taoufiq Damir Karpuk, David |
description | We study ideal lattices in \(\mathbb{R}^2\) coming from real quadratic fields, and give an explicit method for computing all well-rounded twists of any such ideal lattice. We apply this to ideal lattices coming from Markoff numbers to construct infinite families of non-equivalent planar lattices with good sphere-packing radius and good minimum product distance. We also provide a complete classification of all real quadratic fields such that the orthogonal lattice is the only well-rounded twist of the lattice corresponding to the ring of integers. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073434709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073434709</sourcerecordid><originalsourceid>FETCH-proquest_journals_20734347093</originalsourceid><addsrcrecordid>eNqNikEKwjAQAIMgWLR_WPBciElq9SaIRcGLpdBjCWYLLbHRbILft4IP8DQwMzOWCCk32U4JsWAp0cA5F9tC5LlM2KFBa7PKxdGggfrdUyBwHVwMagtXHUJ_R4LOuwdUX3WL2ng9WSh7tIZWbN5pS5j-uGTr8lQfz9nTu1dECu3goh-n1ApeSCVVwffyv-sD3Uc4TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073434709</pqid></control><display><type>article</type><title>Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields</title><source>Free E- Journals</source><creator>Mohamed Taoufiq Damir ; Karpuk, David</creator><creatorcontrib>Mohamed Taoufiq Damir ; Karpuk, David</creatorcontrib><description>We study ideal lattices in \(\mathbb{R}^2\) coming from real quadratic fields, and give an explicit method for computing all well-rounded twists of any such ideal lattice. We apply this to ideal lattices coming from Markoff numbers to construct infinite families of non-equivalent planar lattices with good sphere-packing radius and good minimum product distance. We also provide a complete classification of all real quadratic fields such that the orthogonal lattice is the only well-rounded twist of the lattice corresponding to the ring of integers.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Integers ; Lattices</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Mohamed Taoufiq Damir</creatorcontrib><creatorcontrib>Karpuk, David</creatorcontrib><title>Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields</title><title>arXiv.org</title><description>We study ideal lattices in \(\mathbb{R}^2\) coming from real quadratic fields, and give an explicit method for computing all well-rounded twists of any such ideal lattice. We apply this to ideal lattices coming from Markoff numbers to construct infinite families of non-equivalent planar lattices with good sphere-packing radius and good minimum product distance. We also provide a complete classification of all real quadratic fields such that the orthogonal lattice is the only well-rounded twist of the lattice corresponding to the ring of integers.</description><subject>Integers</subject><subject>Lattices</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNikEKwjAQAIMgWLR_WPBciElq9SaIRcGLpdBjCWYLLbHRbILft4IP8DQwMzOWCCk32U4JsWAp0cA5F9tC5LlM2KFBa7PKxdGggfrdUyBwHVwMagtXHUJ_R4LOuwdUX3WL2ng9WSh7tIZWbN5pS5j-uGTr8lQfz9nTu1dECu3goh-n1ApeSCVVwffyv-sD3Uc4TQ</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Mohamed Taoufiq Damir</creator><creator>Karpuk, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180919</creationdate><title>Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields</title><author>Mohamed Taoufiq Damir ; Karpuk, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20734347093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Integers</topic><topic>Lattices</topic><toplevel>online_resources</toplevel><creatorcontrib>Mohamed Taoufiq Damir</creatorcontrib><creatorcontrib>Karpuk, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohamed Taoufiq Damir</au><au>Karpuk, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields</atitle><jtitle>arXiv.org</jtitle><date>2018-09-19</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We study ideal lattices in \(\mathbb{R}^2\) coming from real quadratic fields, and give an explicit method for computing all well-rounded twists of any such ideal lattice. We apply this to ideal lattices coming from Markoff numbers to construct infinite families of non-equivalent planar lattices with good sphere-packing radius and good minimum product distance. We also provide a complete classification of all real quadratic fields such that the orthogonal lattice is the only well-rounded twist of the lattice corresponding to the ring of integers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073434709 |
source | Free E- Journals |
subjects | Integers Lattices |
title | Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A15%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Well-Rounded%20Twists%20of%20Ideal%20Lattices%20from%20Real%20Quadratic%20Fields&rft.jtitle=arXiv.org&rft.au=Mohamed%20Taoufiq%20Damir&rft.date=2018-09-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073434709%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073434709&rft_id=info:pmid/&rfr_iscdi=true |