Well-Rounded Twists of Ideal Lattices from Real Quadratic Fields

We study ideal lattices in \(\mathbb{R}^2\) coming from real quadratic fields, and give an explicit method for computing all well-rounded twists of any such ideal lattice. We apply this to ideal lattices coming from Markoff numbers to construct infinite families of non-equivalent planar lattices wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
Hauptverfasser: Mohamed Taoufiq Damir, Karpuk, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study ideal lattices in \(\mathbb{R}^2\) coming from real quadratic fields, and give an explicit method for computing all well-rounded twists of any such ideal lattice. We apply this to ideal lattices coming from Markoff numbers to construct infinite families of non-equivalent planar lattices with good sphere-packing radius and good minimum product distance. We also provide a complete classification of all real quadratic fields such that the orthogonal lattice is the only well-rounded twist of the lattice corresponding to the ring of integers.
ISSN:2331-8422