Relatively Uniformly Continuous Semigroups on Vector Lattices
In this paper we study continuous semigroups of positive operators on general vector lattices equipped with the relative uniform topology \(\tau_{ru}\). We introduce the notions of strong continuity with respect to \(\tau_{ru}\) and relative uniform continuity for semigroups. These notions allow us...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study continuous semigroups of positive operators on general vector lattices equipped with the relative uniform topology \(\tau_{ru}\). We introduce the notions of strong continuity with respect to \(\tau_{ru}\) and relative uniform continuity for semigroups. These notions allow us to study semigroups on non-locally convex spaces such as \(L^p(\mathbb{R})\) for \(0 |
---|---|
ISSN: | 2331-8422 |