A JSJ-type decomposition theorem for symplectic fillings
We establish a JSJ-type decomposition theorem for splitting exact symplectic fillings of contact 3-manifolds along \emph{mixed tori} -- these are convex tori satisfying a particular geometric condition. As an application, we show that if \((M,\xi)\) is obtained from \((S^3,\xi_{\mathrm{std}})\) via...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Austin, Christian Menke, Michael |
description | We establish a JSJ-type decomposition theorem for splitting exact symplectic fillings of contact 3-manifolds along \emph{mixed tori} -- these are convex tori satisfying a particular geometric condition. As an application, we show that if \((M,\xi)\) is obtained from \((S^3,\xi_{\mathrm{std}})\) via Legendrian surgery along a knot which has been stabilized both positively and negatively, then \((M,\xi)\) has a unique exact filling. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2073366142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2073366142</sourcerecordid><originalsourceid>FETCH-proquest_journals_20733661423</originalsourceid><addsrcrecordid>eNqNyr0KwjAUQOEgCBbtOwScC-lN_1YRRbrqXqTeaEraG3PToW-vgw_gdIbvrEQCWudZUwBsRMo8KKWgqqEsdSKag2yvbRYXj_KBPY2e2EZLk4wvpICjNBQkL6N32EfbS2Ods9OTd2Jt7o4x_XUr9ufT7XjJfKD3jBy7geYwfakDVWtdVXkB-r_rAz9rNiU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2073366142</pqid></control><display><type>article</type><title>A JSJ-type decomposition theorem for symplectic fillings</title><source>Free E- Journals</source><creator>Austin, Christian ; Menke, Michael</creator><creatorcontrib>Austin, Christian ; Menke, Michael</creatorcontrib><description>We establish a JSJ-type decomposition theorem for splitting exact symplectic fillings of contact 3-manifolds along \emph{mixed tori} -- these are convex tori satisfying a particular geometric condition. As an application, we show that if \((M,\xi)\) is obtained from \((S^3,\xi_{\mathrm{std}})\) via Legendrian surgery along a knot which has been stabilized both positively and negatively, then \((M,\xi)\) has a unique exact filling.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decomposition ; Theorems ; Toruses</subject><ispartof>arXiv.org, 2022-09</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Austin, Christian</creatorcontrib><creatorcontrib>Menke, Michael</creatorcontrib><title>A JSJ-type decomposition theorem for symplectic fillings</title><title>arXiv.org</title><description>We establish a JSJ-type decomposition theorem for splitting exact symplectic fillings of contact 3-manifolds along \emph{mixed tori} -- these are convex tori satisfying a particular geometric condition. As an application, we show that if \((M,\xi)\) is obtained from \((S^3,\xi_{\mathrm{std}})\) via Legendrian surgery along a knot which has been stabilized both positively and negatively, then \((M,\xi)\) has a unique exact filling.</description><subject>Decomposition</subject><subject>Theorems</subject><subject>Toruses</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyr0KwjAUQOEgCBbtOwScC-lN_1YRRbrqXqTeaEraG3PToW-vgw_gdIbvrEQCWudZUwBsRMo8KKWgqqEsdSKag2yvbRYXj_KBPY2e2EZLk4wvpICjNBQkL6N32EfbS2Ods9OTd2Jt7o4x_XUr9ufT7XjJfKD3jBy7geYwfakDVWtdVXkB-r_rAz9rNiU</recordid><startdate>20220929</startdate><enddate>20220929</enddate><creator>Austin, Christian</creator><creator>Menke, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220929</creationdate><title>A JSJ-type decomposition theorem for symplectic fillings</title><author>Austin, Christian ; Menke, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20733661423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Decomposition</topic><topic>Theorems</topic><topic>Toruses</topic><toplevel>online_resources</toplevel><creatorcontrib>Austin, Christian</creatorcontrib><creatorcontrib>Menke, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Austin, Christian</au><au>Menke, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A JSJ-type decomposition theorem for symplectic fillings</atitle><jtitle>arXiv.org</jtitle><date>2022-09-29</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>We establish a JSJ-type decomposition theorem for splitting exact symplectic fillings of contact 3-manifolds along \emph{mixed tori} -- these are convex tori satisfying a particular geometric condition. As an application, we show that if \((M,\xi)\) is obtained from \((S^3,\xi_{\mathrm{std}})\) via Legendrian surgery along a knot which has been stabilized both positively and negatively, then \((M,\xi)\) has a unique exact filling.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2022-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2073366142 |
source | Free E- Journals |
subjects | Decomposition Theorems Toruses |
title | A JSJ-type decomposition theorem for symplectic fillings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A03%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20JSJ-type%20decomposition%20theorem%20for%20symplectic%20fillings&rft.jtitle=arXiv.org&rft.au=Austin,%20Christian&rft.date=2022-09-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2073366142%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2073366142&rft_id=info:pmid/&rfr_iscdi=true |