A JSJ-type decomposition theorem for symplectic fillings
We establish a JSJ-type decomposition theorem for splitting exact symplectic fillings of contact 3-manifolds along \emph{mixed tori} -- these are convex tori satisfying a particular geometric condition. As an application, we show that if \((M,\xi)\) is obtained from \((S^3,\xi_{\mathrm{std}})\) via...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish a JSJ-type decomposition theorem for splitting exact symplectic fillings of contact 3-manifolds along \emph{mixed tori} -- these are convex tori satisfying a particular geometric condition. As an application, we show that if \((M,\xi)\) is obtained from \((S^3,\xi_{\mathrm{std}})\) via Legendrian surgery along a knot which has been stabilized both positively and negatively, then \((M,\xi)\) has a unique exact filling. |
---|---|
ISSN: | 2331-8422 |