The plane Jacobian conjecture for rational curves

Let K be an algebraically closed field of characteristic zero and let f(x,y) be a nonzero polynomial of K[x,y]. We prove that if the generic element of the family \((f-\lambda)\_{\lambda}\) is a rational polynomial, and if the Jacobian J(f,g) is a nonzero constant for some polynomial g in K[x,y], th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-07
1. Verfasser: Assi, Abdallah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let K be an algebraically closed field of characteristic zero and let f(x,y) be a nonzero polynomial of K[x,y]. We prove that if the generic element of the family \((f-\lambda)\_{\lambda}\) is a rational polynomial, and if the Jacobian J(f,g) is a nonzero constant for some polynomial g in K[x,y], then K[f,g] =K[x,y].
ISSN:2331-8422