The plane Jacobian conjecture for rational curves
Let K be an algebraically closed field of characteristic zero and let f(x,y) be a nonzero polynomial of K[x,y]. We prove that if the generic element of the family \((f-\lambda)\_{\lambda}\) is a rational polynomial, and if the Jacobian J(f,g) is a nonzero constant for some polynomial g in K[x,y], th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2019-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let K be an algebraically closed field of characteristic zero and let f(x,y) be a nonzero polynomial of K[x,y]. We prove that if the generic element of the family \((f-\lambda)\_{\lambda}\) is a rational polynomial, and if the Jacobian J(f,g) is a nonzero constant for some polynomial g in K[x,y], then K[f,g] =K[x,y]. |
---|---|
ISSN: | 2331-8422 |