COVERS OF GENERALIZED QUADRANGLES

We solve a problem posed by Cardinali and Sastry (Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 591–612) about factorization of 2-covers of finite classical generalized quadrangles (GQs). To that end, we develop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glasgow mathematical journal 2018-09, Vol.60 (3), p.585-601
Hauptverfasser: THAS, JOSEPH A., THAS, KOEN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We solve a problem posed by Cardinali and Sastry (Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 591–612) about factorization of 2-covers of finite classical generalized quadrangles (GQs). To that end, we develop a general theory of cover factorization for GQs, and in particular, we study the isomorphism problem for such covers and associated geometries. As a byproduct, we obtain new results about semi-partial geometries coming from θ-covers, and consider related problems.
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089517000313