COVERS OF GENERALIZED QUADRANGLES
We solve a problem posed by Cardinali and Sastry (Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 591–612) about factorization of 2-covers of finite classical generalized quadrangles (GQs). To that end, we develop...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2018-09, Vol.60 (3), p.585-601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We solve a problem posed by Cardinali and Sastry (Elliptic ovoids and their rosettes in a classical generalized quadrangle of even order. Proc. Indian Acad. Sci. Math. Sci. 126 (2016), 591–612) about factorization of 2-covers of finite classical generalized quadrangles (GQs). To that end, we develop a general theory of cover factorization for GQs, and in particular, we study the isomorphism problem for such covers and associated geometries. As a byproduct, we obtain new results about semi-partial geometries coming from θ-covers, and consider related problems. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089517000313 |