Building of peculiar heterostructure of Ag/two-dimensional fullerene shell-WO^sub 3-x^ for enhanced photoelectrochemical performance

Photoelectrochemical (PEC) water splitting has been a promising approach for solar energy conversion to meet the clean energy demand. Design and fabrication of high-quality photoelectrode for water splitting with enhanced light absorption, as well as efficient charge separation and transport are cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2018-09, Vol.231, p.381
Hauptverfasser: Ren, Yumei, Xu, Qun, Zheng, Xiaoli, Fu, Yongzhu, Wang, Zhuan, Chen, Hailong, Weng, Yuxiang, Zhou, Yunchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photoelectrochemical (PEC) water splitting has been a promising approach for solar energy conversion to meet the clean energy demand. Design and fabrication of high-quality photoelectrode for water splitting with enhanced light absorption, as well as efficient charge separation and transport are challenging. Herein, two-dimensional (2D) WO3-x nanosheets with unique fullerene shell-like nanostructure are prepared with assistance of supercritical CO2 (SC CO2). Then a novel plasmonic photoanode heterostructure composed of plasmonic Ag and fullerene shell-WO3-x is synthesized for PEC water splitting and photooxidation degradation. The unique co-existence of amorphous and crystalline structure of WO3-x leads to uniformly distribution of Ag nanoparticles, simultaneously increasing the active site density and improving the electron transport. Femtosecond time-resolved IR absorption spectrum analysis indicates the surface plasmonic resonance (SPR) effect of Ag nanoparticles can mediate efficient electron transfer to fullerene shell-WO3-x nanosheets. The photoresponse of the plasmonic Ag/fullerene shell-WO3-x heterostructure is 2.5 times higher than that of fullerene shell-WO3-x. By combining the synergistic effects of the special microstructures of plasmonic Ag and fullerene shell-WO3-x, we are able to design a low-cost photoelectronic catalyst for efficient PEC water splitting and photooxidation degradation. The strategy developed here provides a fascinating way to synthesize high efficient photoelectronic catalysts for solar energy conversion.
ISSN:0926-3373
1873-3883