A new fractional derivative involving the normalized sinc function without singular kernel
In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2017-12, Vol.226 (16-18), p.3567-3575 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems. |
---|---|
ISSN: | 1951-6355 1951-6401 |
DOI: | 10.1140/epjst/e2018-00020-2 |