A new fractional derivative involving the normalized sinc function without singular kernel

In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2017-12, Vol.226 (16-18), p.3567-3575
Hauptverfasser: Yang, Xiao-Jun, Gao, Feng, Tenreiro Machado, J. A., Baleanu, Dumitru
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a new fractional derivative involving the normalized sinc function without singular kernel is proposed. The Laplace transform is used to find the analytical solution of the anomalous heat-diffusion problems. The comparative results between classical and fractional-order operators are presented. The results are significant in the analysis of one-dimensional anomalous heat-transfer problems.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjst/e2018-00020-2