Voltage Ripple of Electrode Sensor in Electrolyte Flow

Voltage ripple of electrode sensor that moves relative to electrolyte (flow noise) is interpreted in agreement with experimental data using variations in the adsorption rate of oxygen on the electrode surface upon variations in the thickness of the diffusion layer. A relationship of electrode potent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of communications technology & electronics 2018-07, Vol.63 (7), p.799-804
1. Verfasser: Maksimenko, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 804
container_issue 7
container_start_page 799
container_title Journal of communications technology & electronics
container_volume 63
creator Maksimenko, V. G.
description Voltage ripple of electrode sensor that moves relative to electrolyte (flow noise) is interpreted in agreement with experimental data using variations in the adsorption rate of oxygen on the electrode surface upon variations in the thickness of the diffusion layer. A relationship of electrode potential and flow velocity jumps is derived. It is shown that the electrode voltage ripple is proportional to the pulsation of the liquid flow velocity and is inertial with respect to such a pulsation with a time constant of several milliseconds. It is also shown that the sensor sensitivity to velocity pulsations exponentially decreases with a time constant of several hours. The dependences of the ripple amplitude on the pulsation frequency of the velocity, electrolyte concentration, and storage time of electrodes in electrolyte that are obtained using the above relationship are proven in experiments.
doi_str_mv 10.1134/S1064226918070112
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2072951307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A549718284</galeid><sourcerecordid>A549718284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-e43dedeedf45c8609043aedce809c134972f2d80f3e151379698a743211cff393</originalsourceid><addsrcrecordid>eNp1kd9LwzAQgIMoOKd_gG8FnwQ786Npm8cxNh0MhE19DTW91I6uqUmG7r83o4oOkUAS7r7vLuEQuiR4RAhLblcEpwmlqSA5zjAh9AgNCOc8TjnPjsM9pON9_hSdObfGmIkUswFKn03jiwqiZd11DURGR9MGlLemhGgFrTM2qtvvWLPzEM0a836OTnTROLj4OofoaTZ9nNzHi4e7-WS8iFWSch9DwkooAUqdcJWnWOCEFVAqyLFQ4dkio5qWOdYMCCcsE6nIiyxhlBClNRNsiK76up01b1twXq7N1rahpaQ4oyJIOAvUqKeqogFZt9p4W6iwStjUyrSg6xAf89CP5DRPgnB9IATGw4eviq1zcr5aHrI3v9iXratbcGFzdfXqXa8c4KTHlTXOWdCys_WmsDtJsNyPSv4ZVXBo77jAthXYn1_-L30C5NiR1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2072951307</pqid></control><display><type>article</type><title>Voltage Ripple of Electrode Sensor in Electrolyte Flow</title><source>SpringerLink</source><creator>Maksimenko, V. G.</creator><creatorcontrib>Maksimenko, V. G.</creatorcontrib><description>Voltage ripple of electrode sensor that moves relative to electrolyte (flow noise) is interpreted in agreement with experimental data using variations in the adsorption rate of oxygen on the electrode surface upon variations in the thickness of the diffusion layer. A relationship of electrode potential and flow velocity jumps is derived. It is shown that the electrode voltage ripple is proportional to the pulsation of the liquid flow velocity and is inertial with respect to such a pulsation with a time constant of several milliseconds. It is also shown that the sensor sensitivity to velocity pulsations exponentially decreases with a time constant of several hours. The dependences of the ripple amplitude on the pulsation frequency of the velocity, electrolyte concentration, and storage time of electrodes in electrolyte that are obtained using the above relationship are proven in experiments.</description><identifier>ISSN: 1064-2269</identifier><identifier>EISSN: 1555-6557</identifier><identifier>DOI: 10.1134/S1064226918070112</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Adsorption ; Communications Engineering ; Diffusion layers ; Electric potential ; Electrodes ; Electrolytes ; Engineering ; Flow velocity ; Fluid dynamics ; Liquid flow ; Networks ; Pulsation ; Sensors ; Statistical Radiophysics ; Thickness ; Time constant</subject><ispartof>Journal of communications technology &amp; electronics, 2018-07, Vol.63 (7), p.799-804</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Journal of Communications Technology and Electronics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-e43dedeedf45c8609043aedce809c134972f2d80f3e151379698a743211cff393</citedby><cites>FETCH-LOGICAL-c465t-e43dedeedf45c8609043aedce809c134972f2d80f3e151379698a743211cff393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1064226918070112$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1064226918070112$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Maksimenko, V. G.</creatorcontrib><title>Voltage Ripple of Electrode Sensor in Electrolyte Flow</title><title>Journal of communications technology &amp; electronics</title><addtitle>J. Commun. Technol. Electron</addtitle><description>Voltage ripple of electrode sensor that moves relative to electrolyte (flow noise) is interpreted in agreement with experimental data using variations in the adsorption rate of oxygen on the electrode surface upon variations in the thickness of the diffusion layer. A relationship of electrode potential and flow velocity jumps is derived. It is shown that the electrode voltage ripple is proportional to the pulsation of the liquid flow velocity and is inertial with respect to such a pulsation with a time constant of several milliseconds. It is also shown that the sensor sensitivity to velocity pulsations exponentially decreases with a time constant of several hours. The dependences of the ripple amplitude on the pulsation frequency of the velocity, electrolyte concentration, and storage time of electrodes in electrolyte that are obtained using the above relationship are proven in experiments.</description><subject>Adsorption</subject><subject>Communications Engineering</subject><subject>Diffusion layers</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Engineering</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Liquid flow</subject><subject>Networks</subject><subject>Pulsation</subject><subject>Sensors</subject><subject>Statistical Radiophysics</subject><subject>Thickness</subject><subject>Time constant</subject><issn>1064-2269</issn><issn>1555-6557</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kd9LwzAQgIMoOKd_gG8FnwQ786Npm8cxNh0MhE19DTW91I6uqUmG7r83o4oOkUAS7r7vLuEQuiR4RAhLblcEpwmlqSA5zjAh9AgNCOc8TjnPjsM9pON9_hSdObfGmIkUswFKn03jiwqiZd11DURGR9MGlLemhGgFrTM2qtvvWLPzEM0a836OTnTROLj4OofoaTZ9nNzHi4e7-WS8iFWSch9DwkooAUqdcJWnWOCEFVAqyLFQ4dkio5qWOdYMCCcsE6nIiyxhlBClNRNsiK76up01b1twXq7N1rahpaQ4oyJIOAvUqKeqogFZt9p4W6iwStjUyrSg6xAf89CP5DRPgnB9IATGw4eviq1zcr5aHrI3v9iXratbcGFzdfXqXa8c4KTHlTXOWdCys_WmsDtJsNyPSv4ZVXBo77jAthXYn1_-L30C5NiR1g</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Maksimenko, V. G.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>XI7</scope><scope>ISR</scope><scope>3V.</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L7M</scope><scope>M0C</scope><scope>M2P</scope><scope>M2T</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20180701</creationdate><title>Voltage Ripple of Electrode Sensor in Electrolyte Flow</title><author>Maksimenko, V. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-e43dedeedf45c8609043aedce809c134972f2d80f3e151379698a743211cff393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Communications Engineering</topic><topic>Diffusion layers</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Engineering</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Liquid flow</topic><topic>Networks</topic><topic>Pulsation</topic><topic>Sensors</topic><topic>Statistical Radiophysics</topic><topic>Thickness</topic><topic>Time constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksimenko, V. G.</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Business Insights: Essentials</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>ProQuest Science Journals</collection><collection>Telecommunications Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of communications technology &amp; electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksimenko, V. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage Ripple of Electrode Sensor in Electrolyte Flow</atitle><jtitle>Journal of communications technology &amp; electronics</jtitle><stitle>J. Commun. Technol. Electron</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>63</volume><issue>7</issue><spage>799</spage><epage>804</epage><pages>799-804</pages><issn>1064-2269</issn><eissn>1555-6557</eissn><abstract>Voltage ripple of electrode sensor that moves relative to electrolyte (flow noise) is interpreted in agreement with experimental data using variations in the adsorption rate of oxygen on the electrode surface upon variations in the thickness of the diffusion layer. A relationship of electrode potential and flow velocity jumps is derived. It is shown that the electrode voltage ripple is proportional to the pulsation of the liquid flow velocity and is inertial with respect to such a pulsation with a time constant of several milliseconds. It is also shown that the sensor sensitivity to velocity pulsations exponentially decreases with a time constant of several hours. The dependences of the ripple amplitude on the pulsation frequency of the velocity, electrolyte concentration, and storage time of electrodes in electrolyte that are obtained using the above relationship are proven in experiments.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1064226918070112</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-2269
ispartof Journal of communications technology & electronics, 2018-07, Vol.63 (7), p.799-804
issn 1064-2269
1555-6557
language eng
recordid cdi_proquest_journals_2072951307
source SpringerLink
subjects Adsorption
Communications Engineering
Diffusion layers
Electric potential
Electrodes
Electrolytes
Engineering
Flow velocity
Fluid dynamics
Liquid flow
Networks
Pulsation
Sensors
Statistical Radiophysics
Thickness
Time constant
title Voltage Ripple of Electrode Sensor in Electrolyte Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20Ripple%20of%20Electrode%20Sensor%20in%20Electrolyte%20Flow&rft.jtitle=Journal%20of%20communications%20technology%20&%20electronics&rft.au=Maksimenko,%20V.%20G.&rft.date=2018-07-01&rft.volume=63&rft.issue=7&rft.spage=799&rft.epage=804&rft.pages=799-804&rft.issn=1064-2269&rft.eissn=1555-6557&rft_id=info:doi/10.1134/S1064226918070112&rft_dat=%3Cgale_proqu%3EA549718284%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2072951307&rft_id=info:pmid/&rft_galeid=A549718284&rfr_iscdi=true