Voltage Ripple of Electrode Sensor in Electrolyte Flow
Voltage ripple of electrode sensor that moves relative to electrolyte (flow noise) is interpreted in agreement with experimental data using variations in the adsorption rate of oxygen on the electrode surface upon variations in the thickness of the diffusion layer. A relationship of electrode potent...
Gespeichert in:
Veröffentlicht in: | Journal of communications technology & electronics 2018-07, Vol.63 (7), p.799-804 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Voltage ripple of electrode sensor that moves relative to electrolyte (flow noise) is interpreted in agreement with experimental data using variations in the adsorption rate of oxygen on the electrode surface upon variations in the thickness of the diffusion layer. A relationship of electrode potential and flow velocity jumps is derived. It is shown that the electrode voltage ripple is proportional to the pulsation of the liquid flow velocity and is inertial with respect to such a pulsation with a time constant of several milliseconds. It is also shown that the sensor sensitivity to velocity pulsations exponentially decreases with a time constant of several hours. The dependences of the ripple amplitude on the pulsation frequency of the velocity, electrolyte concentration, and storage time of electrodes in electrolyte that are obtained using the above relationship are proven in experiments. |
---|---|
ISSN: | 1064-2269 1555-6557 |
DOI: | 10.1134/S1064226918070112 |