A facile approach towards fabrication of lightweight biodegradable poly (butylene succinate)/carbon fiber composite foams with high electrical conductivity and strength
Lightweight electrically conductive biodegradable polymer composites have been considered as a promising environmental-friendly alternative to replace the traditional petroleum-based CPCs because of the economic and ecological drawbacks of petroleum-based plastics. Herein, we demonstrated a facile a...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2018-05, Vol.159, p.171-179 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Lightweight electrically conductive biodegradable polymer composites have been considered as a promising environmental-friendly alternative to replace the traditional petroleum-based CPCs because of the economic and ecological drawbacks of petroleum-based plastics. Herein, we demonstrated a facile and effective way to fabricate poly (butylene succinate) (PBS)/carbon fiber (CF) composites foams with lightweight, high-strength and improved conductive networks through the combination of solvent mixing, micro-injection molding and supercritical carbon dioxide (Sc-CO2) foaming methods. Results showed that the resulting composite foams possessed much higher electrical conductivity (the percolation threshold decreased from 3.6 to 7.4 to 1.04–2.37 vol%), suggesting that the introduction of foaming technique could be beneficial for the formation of effective 3D conductivity networks. The composite foams presented a good compressive strength and a low density (reduced around ∼50%). Moreover, effects of different length and content of CF on the mechanical and thermal performance, rheological behavior, foaming properties and electrical conductivities of PBS/CF composites have been investigated. |
---|---|
ISSN: | 0266-3538 1879-1050 |
DOI: | 10.1016/j.compscitech.2018.02.021 |