Segmentation-Free Approaches for Handwritten Numeral String Recognition

This paper presents segmentation-free strategies for the recognition of handwritten numeral strings of unknown length. A synthetic dataset of touching numeral strings of sizes 2-, 3- and 4-digits was created to train end-to-end solutions based on Convolutional Neural Networks. A robust experimental...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Hochuli, Andre G, Oliveira, Luiz E S, Britto, Alceu S, Sabourin, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents segmentation-free strategies for the recognition of handwritten numeral strings of unknown length. A synthetic dataset of touching numeral strings of sizes 2-, 3- and 4-digits was created to train end-to-end solutions based on Convolutional Neural Networks. A robust experimental protocol is used to show that the proposed segmentation-free methods may reach the state-of-the-art performance without suffering the heavy burden of over-segmentation based methods. In addition, they confirmed the importance of introducing contextual information in the design of end-to-end solutions, such as the proposed length classifier when recognizing numeral strings.
ISSN:2331-8422