Robust Dual View Deep Agent

Motivated by recent advance of machine learning using Deep Reinforcement Learning this paper proposes a modified architecture that produces more robust agents and speeds up the training process. Our architecture is based on Asynchronous Advantage Actor-Critic (A3C) algorithm where the total input di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-04
Hauptverfasser: Sobh, Ibrahim M, Darwish, Nevin M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by recent advance of machine learning using Deep Reinforcement Learning this paper proposes a modified architecture that produces more robust agents and speeds up the training process. Our architecture is based on Asynchronous Advantage Actor-Critic (A3C) algorithm where the total input dimensionality is halved by dividing the input into two independent streams. We use ViZDoom, 3D world software that is based on the classical first person shooter video game, Doom, as a test case. The experiments show that in comparison to single input agents, the proposed architecture succeeds to have the same playing performance and shows more robust behavior, achieving significant reduction in the number of training parameters of almost 30%.
ISSN:2331-8422